Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Med ; 14(1): 108, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153630

RESUMO

BACKGROUND: Emerging RNA viruses that target the central nervous system (CNS) lead to cognitive sequelae in survivors. Studies in humans and mice infected with West Nile virus (WNV), a re-emerging RNA virus associated with learning and memory deficits, revealed microglial-mediated synapse elimination within the hippocampus. Moreover, CNS-resident memory T (TRM) cells activate microglia, limiting synapse recovery and inducing spatial learning defects in WNV-recovered mice. The signals involved in T cell-microglia interactions are unknown. METHODS: Here, we examined immune cells within the murine WNV-recovered forebrain using single-cell RNA sequencing to identify putative ligand-receptor pairs involved in intercellular communication between T cells and microglia. Clustering and differential gene analyses were followed by protein validation and genetic and antibody-based approaches utilizing an established murine model of WNV recovery in which microglia and complement promote ongoing hippocampal synaptic loss. RESULTS: Profiling of host transcriptome immune cells at 25 days post-infection in mice revealed a shift in forebrain homeostatic microglia to activated subpopulations with transcriptional signatures that have previously been observed in studies of neurodegenerative diseases. Importantly, CXCL16/CXCR6, a chemokine signaling pathway involved in TRM cell biology, was identified as critically regulating CXCR6 expressing CD8+ TRM cell numbers within the WNV-recovered forebrain. We demonstrate that CXCL16 is highly expressed by all myeloid cells, and its unique receptor, CXCR6, is highly expressed on all CD8+ T cells. Using genetic and pharmacological approaches, we demonstrate that CXCL16/CXCR6 not only is required for the maintenance of WNV-specific CD8 TRM cells in the post-infectious CNS, but also contributes to their expression of TRM cell markers. Moreover, CXCR6+CD8+ T cells are required for glial activation and ongoing synapse elimination. CONCLUSIONS: We provide a comprehensive assessment of the role of CXCL16/CXCR6 as an interaction link between microglia and CD8+ T cells that maintains forebrain TRM cells, microglial and astrocyte activation, and ongoing synapse elimination in virally recovered animals. We also show that therapeutic targeting of CXCL16 in mice during recovery may reduce CNS CD8+ TRM cells.


Assuntos
Linfócitos T CD8-Positivos , Transcriptoma , Animais , Linfócitos T CD8-Positivos/metabolismo , Sistema Nervoso Central/metabolismo , Quimiocina CXCL16/genética , Quimiocina CXCL16/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Perfilação da Expressão Gênica , Ligantes , Camundongos , RNA/metabolismo , Receptores CXCR6/genética , Receptores CXCR6/metabolismo , Sinapses/metabolismo
2.
J Immunol ; 208(6): 1341-1351, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35181638

RESUMO

Type III IFNs (IFNLs) are newly discovered cytokines, acting at epithelial and other barriers, that exert immunomodulatory functions in addition to their primary roles in antiviral defense. In this study, we define a role for IFNLs in maintaining autoreactive T cell effector function and limiting recovery in a murine model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis. Genetic or Ab-based neutralization of the IFNL receptor (IFNLR) resulted in lack of disease maintenance during experimental autoimmune encephalomyelitis, with loss of CNS Th1 effector responses and limited axonal injury. Phenotypic effects of IFNLR signaling were traced to increased APC function, with associated increase in T cell production of IFN-γ and GM-CSF. Consistent with this, IFNL levels within lesions of CNS tissues derived from patients with MS were elevated compared with MS normal-appearing white matter. Furthermore, expression of IFNLR was selectively elevated in MS active lesions compared with inactive lesions or normal-appearing white matter. These findings suggest IFNL signaling as a potential therapeutic target to prevent chronic autoimmune neuroinflammation.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Autoimunidade , Sistema Nervoso Central , Citocinas/metabolismo , Humanos , Camundongos
3.
Curr Opin Neurol ; 33(3): 405-412, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32304440

RESUMO

PURPOSE OF REVIEW: The present review will outline neuroprotective and neurotoxic effects of central nervous system (CNS) infiltrating T cells during viral infections. Evidence demonstrating differential roles for antiviral effector and resident memory T-cell subsets in virologic control and immunopathology in the CNS will be discussed. Potential therapeutic targets emanating from a growing understanding of T-cell-initiated neuropathology that impacts learning and memory will also be delineated. RECENT FINDINGS: The critical role for T cells in preventing and clearing CNS infections became incontrovertible during the era of acquired immunodeficiency syndrome. Recent studies have further defined differential roles of T-cell subsets, including resident memory T cells (Trm), in antiviral immunity and, unexpectedly, in postinfectious cognitive dysfunction. Mechanisms of T-cell-mediated effects include differential innate immune signaling within neural cells that are virus-specific. SUMMARY: T-cell cytokines that are essential for cell-mediated virologic control during neurotropic viral infections have recently been identified as potential targets to prevent post-infection memory disorders. Further identification of T-cell subsets, their antigen specificity, and postinfection localization of Trm will enhance the efficacy of immunotherapies through minimization of immunopathology.


Assuntos
Encéfalo/imunologia , Infecções do Sistema Nervoso Central/imunologia , Linfócitos T/imunologia , Animais , Citocinas , Humanos , Neurônios/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...